

Whole Chromosome Finishing

- All BAC projects for the chromosome are considered simultaneously.
- Sequence data is merged from overlapping projects.
- A finishing target in an overlapping region is considered once.
- An Oracle database maintains records of all finishing reactions for the whole chromosome and tracks these through the finishing process.

Generation of Finishing Reactions

- Primarily batch-oriented with GUI interface as necessary
- Create reactions: dp, dgtp, custom primers, dens, enhancer, shatter libraries
- Group reactions into plates by priority, source plate, primer temperature, etc
- · Generate appropriate robot files

Finishing Strategy

- Finishing Reactions
- Big Dye reactions sequenced by ABI 3700
- dGTP Big Dye terminator reactions
- Invitrogen SequencerRx reaction enhancer or other enhancer
- Shatter libraries
- Alternate reaction chemistries
- Li-Cor infrared Global IR2 platform

- · Combine Long Reads, Redos & Primer Walks
- · Targets & Reactions
 - Chemistry/Strategy Based on Desired Read Length
 - Geometry First for Strands
 - Quality Second
 - Priority and Alternate Reactions
 - Database Tracking for Efficient Rearray

US DOE JOINT GENOME INSTITUTE

Primer Walks

Custom Primers

- (Mermade) to Close Gaps
 - Automation for 2 Subclones/Primer
 - Q BOT Correlated Rearray
 - · Half-plate Hydra Liquid Primer Handling
 - Database Generates and Tracks Primer Rxn's

DENS

- (Octomer library) for Sequence Quality Improvement
 - Database Tracks Octomer Usage and Stat's

Automation for Subclone Re-array

- · Genetix Q-Bot
- Custom software to permit skips for controls, duplicating wells and flexible positioning.
- Database initiation and tracking
- · 384 well compatible
- 60 re-arrayed destination plates per week

US DOE JOINT GENOME INSTITUTE

SPRI DNA Preps

- Up to 240 96 well plates per week
- On universal primer, terminator chemistry, template produces pass rates of ~90% and read lengths > 650 BP

Template Labeling

- Up to 80 384 well plates labeled per week
- Over 5,000 plates labeled per year
- Four 96 well template plates are merged to one 384 well plate
- Chemistries
 - Custom primer or universal, Big Dye terminator
 - Big Dye primer
 - Universal or custom primer, dGTP Big Dye terminator

US DOE JOINT GENOME INSTITUTE

MerMade Oligonucleotide Synthesis

- Up to 20 plates synthesized per week with two MerMades
- 96 well synthesis format
- Purity confirmed with MALDI TOF Mass Spec and gel electrophoresis
- Upgraded chemical ventilation system
- Developing protocol for Universal CPG to simplify synthesis plate

Sequencing Instrumentation

- · Up to 200 ABI 3700 runs per week
- Five ABI 3700 capillary sequencers
- Five ABI 377 slab gel sequencers
- One Amersham MegaBACE 1000 capillary sequencer

US DOE JOINT GENOME INSTITUTE

Human Chromosome 16 January 29, 2002

Chr16 size

Cytogenetic estimate 98 Mb total

89 Mb euchromatin

Celera Scaffolds

81 Mb

TPF Unique restfrags 77.6 Mb

*Cosmids, BACs, P1's, PACs and YAC Finished TPF Clones

Total 63.5 Mb 462 Clones# Unique ~52 Mb (~58%)

In Finishing*

(at LANL): 37.22 Mb 216 BACs

In Drafting at PGF*

Depth (>6x): 4.77 Mb 30 BACs
In RCA (0x): 2.40 Mb 15 BACs
Glycerol (0x): 0.67 Mb 8 BACs &
Cosmids

*Mb are sums of total clone sizes (not unique)

Clone Gaps (type-3): 13 Estimated remaining BACs: 18

DOE JOINT GENOME INSTITUTE	Human Chromos	some 16 TPF	16p13.3 — 16p13.2 — 16p13.13 —
The TPF (tiling path file) is the minimal tiling set of clones that provides complete coverage of the chromosome.	TPF Standard Clone distribution: 437 RPCI-11 BACs 189 CalTech BACs 93 Cosmids 7 PACs 4 P1's 1 YAC	atistics Unique Coverage: 32.0 Mb p-arm 45.6 Mb q-arm 6 p-arm gaps 7 q-arm gaps	16p13.12 - 16p13.11 - 16p12.3 - 16p12.2 - 16p12.1 - 16p11.2 - 16p11.1 - 16q11.1 - 16q11.2 - 16q1
Redundancy estimated as follows: 89 Mb chr16 -2.1 Mb gap = 86.9 Mb target 108.08 Mb coverage/ 87.9 Mb target = 1.244	Total clone size Total gap size Estimated redundancy Major Finishers on TPF LANL Stanford TIGR Sanger Wash U		16q12.1 - 16q22.1 - 16q22.1 - 16q22.2 - 16q23.1 - 16q23.1 - 16q23.2 - 16q23.3 - 16q23.
	US DOE JOINT	GENOME INSTITUTE	16q24+2 16q24+3

Acknowledgements

DOE Joint Genome Institute and Los Alamos Center for Human Genome Studies

- Trevor Hawkins
- · Sue Lucas
- · Joe Monforte

- · Mark Mundt
- · David Bruce
- · Judith Cohn
- · Levy Ulanovsky
- · Larry Deaven

Mary Frazier

